Title: | Analysis of Honeycomb Selection Designs |
---|---|
Description: | A useful statistical tool for the construction and analysis of Honeycomb Selection Designs. More information about this type of designs: Fasoula V. (2013) <doi:10.1002/9781118497869.ch6> Fasoula V.A., and Tokatlidis I.S. (2012) <doi:10.1007/s13593-011-0034-0> Fasoulas A.C., and Fasoula V.A. (1995) <doi:10.1002/9780470650059.ch3> Tokatlidis I. (2016) <doi:10.1017/S0014479715000150> Tokatlidis I., and Vlachostergios D. (2016) <doi:10.3390/d8040029>. |
Authors: | Anastasios Katsileros [aut], Nikos Antonetsis [aut, cre], Marietta Gkika [aut], Eleni Tani [aut], Ioannis Tokatlidis [aut], Penelope Bebeli [aut] |
Maintainer: | Nikos Antonetsis <[email protected]> |
License: | GPL (>= 2) |
Version: | 2.1.0 |
Built: | 2025-02-02 05:41:15 UTC |
Source: | https://github.com/plantbreedingbiometryaua2/rhoneycomb |
This function analyzes the response variable of the data frame.
analysis( Main_Data_Frame = NULL, Response_Vector = NULL, ring = 6, blocks = FALSE, row_element = NULL, plant_element = NULL, CRS = 5 )
analysis( Main_Data_Frame = NULL, Response_Vector = NULL, ring = 6, blocks = FALSE, row_element = NULL, plant_element = NULL, CRS = 5 )
Main_Data_Frame |
A data frame generated by one of the functions HSD(), HSD0(), HSD01() and HSD03(). |
Response_Vector |
A vector containing the response variable data. |
ring |
The number of plants per moving ring. |
blocks |
The moving circular block. |
row_element |
The position of the plant (number of row) in the centerof a moving ring/circular block. |
plant_element |
The position of the plant (number of plant) in the center of a moving ring/circular block. |
CRS |
The number of selected plants used for the CRS index. |
A list.
Fasoula V. (2013). Prognostic Breeding: A New Paradigm for Crop Improvement. Plant Breeding Reviews 37: 297-347. 10.1002/9781118497869.ch6. doi:10.1002/9781118497869.ch6
Fasoula V.A., and Tokatlidis I.S. (2012). Development of crop cultivars by honeycomb breeding. Agronomy for Sustainable Development 32:161–180. 10.1007/s13593-011-0034-0 doi:10.1007/s13593-011-0034-0
Fasoulas A.C., and Fasoula V.A. (1995). Honeycomb selection designs. In J. Janick (ed.). Plant Breeding Reviews 13: 87-139. doi:10.1002/9780470650059.ch3
Tokatlidis I. (2016). Sampling the spatial heterogeneity of the honeycomb model in maize and wheat breeding trials: Analysis of secondary data compared to popular classical designs. Experimental Agriculture, 52(3), 371-390. doi:10.1017/S0014479715000150
Tokatlidis I., and Vlachostergios D. (2016). Sustainable Stewardship of the Landrace Diversity. Diversity 8(4):29. doi:10.3390/d8040029
main_data<-HSD(7,2,10,10,1) main_data$Data<-wheat_data$total_yield analysis(main_data,"Data",6)
main_data<-HSD(7,2,10,10,1) main_data$Data<-wheat_data$total_yield analysis(main_data,"Data",6)
This function is used to generate the available honeycomb selection designs including k parameters.
generate(E_gen = NULL)
generate(E_gen = NULL)
E_gen |
A single number or a vector of entries. |
A dataframe.
Fasoula V. (2013). Prognostic Breeding: A New Paradigm for Crop Improvement. Plant Breeding Reviews 37: 297-347. 10.1002/9781118497869.ch6. doi:10.1002/9781118497869.ch6
Fasoula V.A., and Tokatlidis I.S. (2012). Development of crop cultivars by honeycomb breeding. Agronomy for Sustainable Development 32:161–180. 10.1007/s13593-011-0034-0 doi:10.1007/s13593-011-0034-0
Fasoulas A.C., and Fasoula V.A. (1995). Honeycomb selection designs. In J. Janick (ed.). Plant Breeding Reviews 13: 87-139. doi:10.1002/9780470650059.ch3
Tokatlidis I. (2016). Sampling the spatial heterogeneity of the honeycomb model in maize and wheat breeding trials: Analysis of secondary data compared to popular classical designs. Experimental Agriculture, 52(3), 371-390. doi:10.1017/S0014479715000150
Tokatlidis I., and Vlachostergios D. (2016). Sustainable Stewardship of the Landrace Diversity. Diversity 8(4):29. doi:10.3390/d8040029
generate(1:50)
generate(1:50)
This function creates a data frame of a honeycomb selection design.
HSD(E, K, rows, plpr, distance, poly = TRUE)
HSD(E, K, rows, plpr, distance, poly = TRUE)
E |
The number of entries. |
K |
The k parameter. |
rows |
The number of rows. |
plpr |
The number of plants per row. |
distance |
The plant-to-plant distance in meters. |
poly |
If TRUE the polygon pattern is displayed. |
A dataframe.
Fasoula V. (2013). Prognostic Breeding: A New Paradigm for Crop Improvement. Plant Breeding Reviews 37: 297-347. 10.1002/9781118497869.ch6. doi:10.1002/9781118497869.ch6
Fasoula V.A., and Tokatlidis I.S. (2012). Development of crop cultivars by honeycomb breeding. Agronomy for Sustainable Development 32:161–180. 10.1007/s13593-011-0034-0 doi:10.1007/s13593-011-0034-0
Fasoulas A.C., and Fasoula V.A. (1995). Honeycomb selection designs. In J. Janick (ed.). Plant Breeding Reviews 13: 87-139. doi:10.1002/9780470650059.ch3
Tokatlidis I. (2016). Sampling the spatial heterogeneity of the honeycomb model in maize and wheat breeding trials: Analysis of secondary data compared to popular classical designs. Experimental Agriculture, 52(3), 371-390. doi:10.1017/S0014479715000150
Tokatlidis I., and Vlachostergios D. (2016). Sustainable Stewardship of the Landrace Diversity. Diversity 8(4):29. doi:10.3390/d8040029
HSD(7,2,10,10,1)
HSD(7,2,10,10,1)
This function creates a data frame of an honeycomb selection design (one entry, without control).
HSD0(rows, plpr, distance, poly = TRUE)
HSD0(rows, plpr, distance, poly = TRUE)
rows |
The number of rows. |
plpr |
The number of plants per row. |
distance |
The plant-to-plant distance in meters. |
poly |
If TRUE set polygon pattern is displayed. |
A dataframe.
Fasoula V. (2013). Prognostic Breeding: A New Paradigm for Crop Improvement. Plant Breeding Reviews 37: 297-347. 10.1002/9781118497869.ch6. doi:10.1002/9781118497869.ch6
Fasoula V.A., and Tokatlidis I.S. (2012). Development of crop cultivars by honeycomb breeding. Agronomy for Sustainable Development 32:161–180. 10.1007/s13593-011-0034-0 doi:10.1007/s13593-011-0034-0
Fasoulas A.C., and Fasoula V.A. (1995). Honeycomb selection designs. In J. Janick (ed.). Plant Breeding Reviews 13: 87-139. doi:10.1002/9780470650059.ch3
Tokatlidis I. (2016). Sampling the spatial heterogeneity of the honeycomb model in maize and wheat breeding trials: Analysis of secondary data compared to popular classical designs. Experimental Agriculture, 52(3), 371-390. doi:10.1017/S0014479715000150
Tokatlidis I., and Vlachostergios D. (2016). Sustainable Stewardship of the Landrace Diversity. Diversity 8(4):29. doi:10.3390/d8040029
HSD0(10,10,1)
HSD0(10,10,1)
This function creates a data frame of an honeycomb selection design (one entry, one control).
HSD01(K, rows, plpr, distance, poly = TRUE)
HSD01(K, rows, plpr, distance, poly = TRUE)
K |
The K parameter. |
rows |
The number of rows. |
plpr |
The number of plants per row. |
distance |
Distance between plants in meters. |
poly |
If TRUE the polygon pattern is displayed. |
A dataframe.
Fasoula V. (2013). Prognostic Breeding: A New Paradigm for Crop Improvement. Plant Breeding Reviews 37: 297-347. 10.1002/9781118497869.ch6. doi:10.1002/9781118497869.ch6
Fasoula V.A., and Tokatlidis I.S. (2012). Development of crop cultivars by honeycomb breeding. Agronomy for Sustainable Development 32:161–180. 10.1007/s13593-011-0034-0 doi:10.1007/s13593-011-0034-0
Fasoulas A.C., and Fasoula V.A. (1995). Honeycomb selection designs. In J. Janick (ed.). Plant Breeding Reviews 13: 87-139. doi:10.1002/9780470650059.ch3
Tokatlidis I. (2016). Sampling the spatial heterogeneity of the honeycomb model in maize and wheat breeding trials: Analysis of secondary data compared to popular classical designs. Experimental Agriculture, 52(3), 371-390. doi:10.1017/S0014479715000150
Tokatlidis I., and Vlachostergios D. (2016). Sustainable Stewardship of the Landrace Diversity. Diversity 8(4):29. doi:10.3390/d8040029
HSD01(1,10,10,1)
HSD01(1,10,10,1)
This function creates a data frame of a honeycomb selection design (one entry, three controls).
HSD03(K, rows, plpr, distance, poly = TRUE)
HSD03(K, rows, plpr, distance, poly = TRUE)
K |
The k parameter. |
rows |
The number of rows. |
plpr |
The number of plants per row. |
distance |
Distance between plants in meters. |
poly |
If TRUE the polygon pattern is displayed. |
A dataframe
Fasoula V. (2013). Prognostic Breeding: A New Paradigm for Crop Improvement. Plant Breeding Reviews 37: 297-347. 10.1002/9781118497869.ch6. doi:10.1002/9781118497869.ch6
Fasoula V.A., and Tokatlidis I.S. (2012). Development of crop cultivars by honeycomb breeding. Agronomy for Sustainable Development 32:161–180. 10.1007/s13593-011-0034-0 doi:10.1007/s13593-011-0034-0
Fasoulas A.C., and Fasoula V.A. (1995). Honeycomb selection designs. In J. Janick (ed.). Plant Breeding Reviews 13: 87-139. doi:10.1002/9780470650059.ch3
Tokatlidis I. (2016). Sampling the spatial heterogeneity of the honeycomb model in maize and wheat breeding trials: Analysis of secondary data compared to popular classical designs. Experimental Agriculture, 52(3), 371-390. doi:10.1017/S0014479715000150
Tokatlidis I., and Vlachostergios D. (2016). Sustainable Stewardship of the Landrace Diversity. Diversity 8(4):29. doi:10.3390/d8040029
HSD03(1,10,10,1)
HSD03(1,10,10,1)
A dataset containing observations from an R7 honeycomb selection design.
wheat_data
wheat_data
The weight (g) of the main spike of a single plant.
The weight (g) of tillers' spikes of a single plant.
The total yield (g) of a single plant.